

African Research Journal of Medical Sciences

ATHEON RESEARCH
JOSHENGE OF METOLOGICAL SCHINGES

ISSN: 3006-7421

Journal homepage: https://www.afrjms.com

Communication Open Access

Reemerging importance of methanogenic archaea in the landscape of periodontal disease

Manosha Lakmali Perera^{1*} and Irosha Rukmali Perera²

School of Dentistry and Oral Health, Griffith University, Queensland, Australia (Alumni). E-mail: manosha_lakmali@yahoo.com Preventive Oral Health Unit, The National Dental Hospital (Teaching), Colombo, Sri Lanka. E-mail: manosha_lakmali@yahoo.com

Article Info

Volume 2, Issue 2, July 2025 Received : 14 March 2025 Accepted : 07 July 2025 Published: 25 July 2025

doi: 10.62587/AFRJMS.2.2.2025.77-81

Abstract

Periodontal disease is the most common chronic inflammatory condition with a polymicrobial origin, particularly among the elderly. Numerous risk factors can independently or synergistically contribute to immune suppression and inflammation in the periodontium. This leads to microbial dysbiosis in the periodontal pockets and the supra gingival biofilm, resulting in the elevation of pathobionts or opportunistic pathogens that are considered potential contributors to periodontal disease. The progression from gingivitis to chronic periodontitis typically follows an ecological succession, starting with the facultative anaerobes of the yellow complex and advancing to the strict anaerobes of the red complex of periodontal pathogens. Additionally, there has been an observed increase in Sulfate-Reducing Bacteria (SRB) within the oral cavities, which are part of the human oral microbiome. SRB is a diverse group of naturally occurring microorganisms known for their capability of dissimilatory sulfate reduction to Hydrogen Sulfide (H,S). Methanogenic archaea are a minority within the SRB group, known for their hydrogenotrophic metabolism and cooperative growth alongside other species in the periodontal pockets. However, these methanogenic archaea are not typically recognized as contributors to the development of periodontal disease. Investigating the role of methanogenic archaea in the context of periodontal disease enhances our understanding of the dynamics within the supragingival biofilm associated with chronic periodontitis.

Keywords: Periodontal disease, Methanogenic archaea, Sulfate-reducing bacteria, Syntrophic interactions, Hydrogenotrophic metabolism

© 2025 Manosha Lakmali Perera and Irosha Rukmali Perera. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

The oral cavity hosts at least 700 bacterial species, along with a diverse range of fungi, archaea, viruses, and protozoa (Perera *et al.*, 2023). Archaea represent one of the three domains of life (Woese *et al.*, 1990; Sogodogo *et al.*, 2019) alongside bacteria and eukaryotes – based on their unique genetic, structural,

3006-7421/© 2025 Manosha Lakmali Perera and Irosha Rukmali Perera. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Corresponding author: Manosha Lakmali Perera, School of Dentistry and Oral Health, Griffith University, Queensland, Australia (Alumni). E-mail: manosha_lakmali@yahoo.com

and biochemical characteristics (Ashok et al., 2013). Methanogenic archaea, are commonly found in anaerobic environments, such as wetlands, rice fields, and biological treatment systems, as well as in the gastrointestinal tracts of ruminants (Horz and Conrads, 2011). Additionally, these methane-producing organisms have been detected in the oral cavity (Eva et al., 2001), gastrointestinal tract (Miller and Wolin, 1982), of humans and vagina (Belay et al., 1990) of women. Methanogenesis, the process through which they produce methane (CH₄), requires the presence of hydrogen (H₂) to reduce carbon dioxide (CO₂) into methane as they are on hydrogenotrophic metabolism (Sogodogo et al., 2019; Triantafyllou et al., 2014). Culture-based methods, along with gas chromatography, have been used to detect methanogenic archaea in oral samples. In addition, molecular techniques that target the 16S rRNA gene or the functional gene mcrA – which encodes for Methyl-Coenzyme M reductase, a key enzyme involved in methanogenesis – are employed (Horz and Conrads, 2011). Molecular techniques especially 16S rRNA sequencing undermine the culture based techniques with inherent limitations (Horz and Conrads, 2011). These detection methods identify Methanobrevibacter oralis as the predominant methanogenic archaea in the oral cavity (Huynh et al., 2015). Other species, such as Methanobrevibacter smithii and Methanosphaera stadtmanae, Methanosarcina mazei, Methanobacterium curvum/ congolense and Thermoplasmata have been encountered on lower prevalence (Belay et al., 1988; Huynh et al., 2015; Nguyen-Hieu et al., 2013; Wilson, 2018).

Periodontal disease begins with gingivitis and progresses to chronic periodontitis, affecting the periodontium. This inflammatory disease has a polymicrobial origin and typically arises from immunosuppressive conditions (Manosha, 2020). Poor oral hygiene, smoking, betel chewing with or without tobacco, genetic susceptibility, poor nutrition, age and immunosuppression of patients due to diabetes, pregnancy related hormonal changes, HIV infection are among the leading risk/predisposing factors of multifactorial entity 0f the commonest chronic inflammatory disease of elderly can lead to tooth loss if not treated (Manosha, 2020). These factors act individually or synergistically to cause microbial dysbiosis in periodontal pockets and supra gingival plaque providing an opportunity to elevate pathobiont which are putative periodontal pathogens avoiding immune surveillance and immune elimination (Perera and Perera, 2020; Seneviratne *et al.*, 2011).

The interactions among a consortium of microbes in polymicrobial infections involve cooperation/synergism and competition/antagonism. Recent advancements in Next-Generation Sequencing (NGS) technologies, especially over the past decade (Perera et al., 2016), have opened up new ways to explore the diversity of microbial communities in unprecedented detail. As a result, hypothetical models have been proposed to explain the progression of periodontal disease, highlighting the virulence factors of low-abundance microbial species in these infections. These species can work synergistically with more prevalent genera, a phenomenon referred to as polymicrobial synergy (Manosha, 2020; Lamont and Hajishengallis, 2015; Hajishengallis et al., 2012), which contributes to chronic inflammation in the oral cavity. It is reasonable to consider the potential role of minority archaea in the development of periodontal disease alongside established periodontal pathogens.

The keystone pathogen hypothesis addresses previous arguments by identifying specific low — abundance microbial pathogens that have a disproportionately large impact on their communities. In the context of microbial literature, the term "keystone" refers to species that play a critical role in maintaining the structure (Manosha, 2020; Lamont and Hajishengallis, 2015; Hajishengallis et al., 2012) of their communities despite their low abundance. This hypothesis suggests that some of these low-abundance pathogens can trigger inflammatory diseases by altering the composition of polymicrobial communities (Manosha, 2020). Therefore, it is reasonable to assume that low-abundance archaea may facilitate the succession of orange and red complex periodontal pathogens as periodontal disease progresses (Socransky et al., 1998). Recent advancements in biofilm technologies have improved our understanding of the ecological processes involved in the assembly succession of the periodontal community (Manosha, 2020). Undisturbed plaque accumulation experiment has revealed that the yellow complex facultative anaerobes such as Streptococcus intermedius, Streptococcus oralis, and Streptococcus mitis were increased in numbers and proportions (Manosha, 2020). Subsequently, the purple complex member-Veillonella parvula, green complex member-Capnocytophaga gingivalis as well as an orange complex member-Fusobacterium nucleatum during 7-days of supra gingival biofilm regrowth, in the same experiment (Teles et al., 2012; Uzel et al., 2011). At last, the red complex pathobionts Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were established in the supra gingival plaque to finish the landscape

of periodontal disease (Teles *et al.*, 2012; Uzel *et al.*, 2011). Transition from facultative anaerobes to strict anaerobes was evident in the progression of periodontitis, thus it is reasonable to assume that the hypoxic environment in the supra gingival biofilm is ideal for the colonization of strict anaerobes at the final stage of supra gingival biofilm (Manosha, 2020). There is a paucity of information on the role of methanogenic archaea in the progression of periodontal disease. The cooperation of methanogens in the syntrophic growth of cohabitants in the periodontal pockets is important to note that methanogens can form methane independently from H₂ by using other electron donors, such as methanol, methylamine, acetate, ethanol, or formiate help other fermenting pathogens by through interspecies hydrogen transfer, is possible. It is reasonable to assume that the H₂ consumption linked with the syntrophic growth of Volatile Fatty Acid (VFA) occurs within the complex oral plaque consortium (Horz and Conrads, 2011).

Methanogens were especially detected at site of poly-microbial anaerobic biofilms in the periodontal pockets as the metabolic compatibility may contribute for the progression of periodontal diseases are initiated and progressed by at or below the gingival margin. Here we can assume that they support the growth of fermenting bacteria, which themselves are opportunistic pathogens.

Virulent attributes of these microbes are termed as 'poly microbial synergy' involving concerted action, which could progress the disease condition via chronic inflammation (Manosha, 2020). There is an involvement of methanogens in the overall infectious process with interspecies hydrogen transfer being an indirect mechanism of virulence (Lepp et al., 2004). In a study conducted to investigate the diversity of Archaea in the human sub gingival crevice, SSU rDNA was amplified with domain-specific primers and cloned independently from samples collected from six patients with periodontitis, it has been revealed that the relative abundance of archaea increased with the severity of periodontal disease. Moreover, there was a corresponding decrease in the relative abundance of SSU rDNA coinciding with an improvement in periodontal status after treatment (Lepp et al., 2004). A study compared the number of methanogens to the occurrence and abundance of ten bacterial species. These species include Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola, which together form the "red complex." Additionally, the study examined Campylobacter rectus, Fusobacterium nucleatum, Parvimonas micra, and Prevotella intermedia, among others, which are members of the "orange complex." Other species evaluated were Aggregatibacter actinomycetemcomitans, Eikenella corrodens, and Actinomyces viscosus. The findings suggest that the metabolic activity of methanogens supports the bacterial communities associated with both the red and orange complexes in cases of human periodontitis. This influence is likely mediated through direct or indirect interactions with P. intermedia. The study also involved defined mixtures of co-cultures that included methanogens combined with either P. intermedia, T. forsythia, or P. gingivalis, observing the resulting growth (Horz and Conrads, 2011). Dental plaque specimens were cultured in an anoxic liquid medium designed for methanogens, along with negative control tubes, as conducted by Huynh and colleagues in 2015 (Huynh et al., 2015). In their study, methanogens were detected in 1 out of 15 (6.67%) control samples and 36 out of 65 (55.38%) samples from patients with periodontitis (p < 0.001). Specifically, Methanobrevibacter oralis was identified in one control and thirty-one patient samples, while Methanobrevibacter smithii was found in two patients. Additionally, a potential new species, Methanobrevibacter sp. strain N13, was detected in three patients with severe periodontitis (Huynh et al., 2015). In a separate study aimed at assessing the prevalence of archaea among chronic periodontitis patients in India (Ashok et al., 2013), the research found that the prevalence of archaea was 29.4% in chronic periodontitis patients, compared to 11.8% in healthy subjects. This difference was not statistically significant. However, when examining the prevalence of archaea in different periodontal conditions, it was found that the prevalence in deep periodontal pockets was 47.1%, and in shallow pockets, it was 11.8%. In healthy sulci, it was 12.5%. These results indicate a statistically significant difference between the prevalence of archaea in deep periodontal pockets (47.1%) and healthy sulci (12.5%), as well as between deep periodontal pockets (47.1%) and shallow pockets (11.8%) (Ashok et al., 2013).

Researchers are investigating the outcome of interaction between archaea and orange and red complex members in the land scape of periodontal disease and it is hypothesized that under anoxic conditions methanogens would remove end-products, lowering the concentration of H_2 and possibly encouraging fermenters especially the putative periodontal pathogens. The Sulphate Reducing Bacteria (SRB) seem competitors of methanogens in most environments due to the usage of sulphate as electron acceptor. This

justifies the previous observations of increased proportions of *Porphyromonas gingivalis*, *Tannerella forsythia* and *Treponema denticola* in the absence of methanogenic archaea ((Lepp *et al.*, 2004; Matarazzo *et al.*, 2012). Methanogenic archaea belong to the Sulphate Reducing Bacteria (SRB), a diverse group of prokaryotic that share the capability of using sulphate or other oxidized sulfur compounds as a terminal electron acceptor in the oxidation of organic matter and archaea are also responsible for the production of Volatile Sulfur Compounds (VSCs) are primarily responsible for oral malodor (Nakano *et al.*, 2002). Therefore, it is important to incorporate the role of methanogenic archaea in the landscape of periodontal disease for the comprehensiveness of the ecological succession.

References

- Ashok, N., Warad, S., Singh, V.P., Chaudhari, H., Narayanan, A. and Rodrigues, J. (2013). Prevalence of archaea in chronic periodontitis patients in an Indian population. *Indian J. Dent. Res.*, 24(3): 289-293. doi: 10.4103/0970-9290.117988. PMID: 24025872.
- Belay, N., Johnson, R., Rajagopal, B.S., Conway de Macario, E. and Daniels, L. (1988). Methanogenic bacteria from human dental plaque. *Appl. Environ. Microbiol.*, 54: 600-603, PMID: 3355146.
- Belay, N., Mukhopadhyay, B., Conway de Macario, E., Galask, R. and Daniels, L. (1990). Methanogenic bacteria in human vaginal samples. *J. Clin. Microbiol.*, 28(7): 1666-1668. doi: 10.1128/jcm.28.7.1666-1668.1990. PMID: 2199527; PMCID: PMC268013.
- Eva, M. Kulik, Heinrich Sandmeier, Karin Hinni and Jürg Meyer (2001). Identification of archaeal rDNA from subgingival dental plaque by PCR amplification and sequence analysis, *FEMS Microbiology Letters*, 196(2): 129-133. https://doi.org/10.1111/j.1574-6968.2001.tb10553.x
- Hajishengallis, G., Darveau, R.P. and Curtis, M.A. (2012). The keystone pathogen hypothesis. *Nature Reviews Microbiology*, 10(10): 717-725.
- Horz, H.P. and Conrads, G. (2011). Methanogenic Archaea and oral infections ways to unravel the black box. *J. Oral. Microbiol.*, 3. doi: 10.3402/jom.v3i0.5940. PMID: 21541092; PMCID: PMC3086593.
- Huynh, H.T., Pignoly, M., Nkamga, V.D., Drancourt, M. and Aboudharam, G. (2015). The repertoire of Archaea cultivated from severe periodontitis. *PLoS One*, 10(4): e0121565. doi: 10.1371/journal.pone.0121565. PMID: 25830311; PMCID: PMC4382158.
- Lamont, R.J. and Hajishengallis, G. (2015). Polymicrobial synergy and dysbiosis in inflammatory disease. *Trends Mol. Med.*, 21(3): 172-183.
- Lepp, P.W., Brinig, M.M., Ouverney, C.C., Palm, K., Armitage, G.C. and Relman, D.A. (2004). Methanogenic Archaea and human periodontal disease. *Proc. natl. acad. sci. USA*. 101(16): 6176-6181. doi: 10.1073/pnas.0308766101. Epub 2004 Apr 5. PMID: 15067114; PMCID: PMC395942.
- Manosha Lakmali Perera. (2020). Possibility of polymicrobial synergy and dysbiosis of periodonto pathogens in the oral squamous cell carcinoma tumour microenvironment. *on J. Dent. & Oral Health.*, 3(5). OJDOH.MS.ID.000574. doi: 10.33552/OJDOH.2020.03.000574.
- Matarazzo, F., Ribeiro, A.C., Faveri, M., Taddei, C., Martinez, M.B. and Mayer, M.P. (2012). The domain Archaea in human mucosal surfaces. *Clin. Microbiol. Infect.*, 18(9): 834-840. doi: 10.1111/j.1469-0691.2012.03958.x. Epub 2012 Jul 24. PMID: 22827611.
- Miller, T.L. and Wolin, M.J. (1982). Arch. Microbiol., 131: 14-18.
- Nakano, Y., Yoshimura, M. and Koga, T. (2002). Correlation between oral malodor and periodontal bacteria. *Microbes Infect.*, 4(6): 679-683. doi: 10.1016/s1286-4579(02)01586-1. PMID: 12048037.
- Nguyen-Hieu, T., Khelaifia, S., Aboudharam, G. and Drancourt, M. (2013). Methanogenic Archaea in subgingival sites: A review. *APMIS*, 121: 467-477.
- Perera, L. and Perera, I. (2020). Revisiting for resolving: The ecological perspective of periodontal bacteriome for prevention and control of periodontitis in COVID-19 Era. *J. Dental. Sci.*, 5: 000275.

- Perera, M., Al hebshi, N.N., Speicher, D.J., Perera, I. and Johnson, N.W. (2016). Emerging role of bacteria in oral carcinogenesis: A review with special reference to perio-pathogenic bacteria. *J. Oral Microbiol.*, 8(1): 32762.
- Perera, M., Perera, I. and Tilakaratne, W.M. (2023). Oral microbiome and oral cancer. *Immunology for Dentistry*, Mohammad Tariqur Rahman, Wim Teughels, Richard J. Lamont (Eds.), First published: 09 June. https://doi.org/10.1002/9781119893035.ch7
- Seneviratne, C.J., Zhang, C.F. and Samaranayake, L.P. (2011). Dental plaque biofilm in oral health and disease. *Chin. J. Dent. Res.*, 14: 87.
- Socransky, S.S., Haffajee, A.D., Cugini, M.A., Smith, C. and Kent, Jr. R.L. (1998). Microbial complexes in subgingival plaque, *J. Clin. Periodontol.*, 25: 134e144.
- Sogodogo, E., Doumbo, O., Aboudharam, G. *et al.* (2019). First characterization of methanogens in oral cavity in Malian patients with oral cavity pathologies. *BMC Oral Health*, 19: 232. https://doi.org/10.1186/s12903-019-0929-8
- Teles, F., Teles, R., Sachdeo, A., Uzel, N., Song, X. *et al.* (2012). Comparison of microbial changes in early redeveloping biofilms on natural teeth and dentures. *J. Periodontol.*, 83(9): 1139-1148.
- Triantafyllou, K., Chang, C. and Pimentel, M. (2014). Methanogens, methane and gastrointestinal motility. *J. Neurogastroenterol. Motil.*, 20: 31-40.
- Uzel, N.G., Teles, F.R., Teles, R.P., Song, X.Q., Torresyap, G. *et al.* (2011). Microbial shifts during dental biofilm re-development in the absence of oral hygiene in periodontal health and disease. *J. Clin. Periodontol.*, 38(7): 612-620.
- Wilson, M. (2018). The human microbiota in health and disease: An ecological and community-based approach. *Garland Science*. 505. https://doi.org/10.1201/9781351068369.
- Woese, C.R., Kandler, O. and Wheelis, M.L. (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. *Proc. Natl. Acad. Sci. USA*, 87: 4576-4579.

Cite this article as: Manosha Lakmali Perera and Irosha Rukmali Perera (2025). Reemerging importance of methanogenic archaea in the landscape of periodontal disease. *African Research Journal of Medical Sciences*. 2(2), 77-81. doi: 10.62587/AFRJMS.2.2.2025.77-81.